Imagine a company that employs 6,000 people. It’s your job to find out what they all do. The catch is that you can’t ask them directly, because you don’t speak their language. What you can do, however, is remove one of them from the workplace and observe the effects of that employee’s absence on the whole company. You can run the same experiment again and again, each time removing a different employee.
What you notice is that about a thousand of the workers are indispensable – if any one of them is absent, everything grinds to a halt. As for the other 5,000, well, the company copes – either what they were doing wasn’t that important in the first place, or their colleagues somehow step into the breach.
However, if you start removing the non-essential employees in pairs, then you find that in many cases the dual absence does cause major problems. You also notice that the dual absences that cause the biggest problems are those involving employees who work in the same department. This makes sense, as losing two members of a team is harder to compensate for than one. By removing two employees at a time in all the different combinations (of which there are millions) you painstakingly gain an insight into how the whole company works.
Unsurprisingly, this is an entirely fictional exercise in management consultancy – but one that serves as an analogy for a genetic experiment conducted 20 years ago at the University of Toronto.
The ‘company’, in this parallel, is a species of yeast and the ‘workers’ are the 6,000 genes that make up its genome.
As Veronique Greenwood reports for Quanta Magazine, the researchers created a vast number of modified strains of the yeast by removing genes one at a time and then in pairs, thereby creating single and double mutants.
Join the discussion
Join like minded readers that support our journalism by becoming a paid subscriber
To join the discussion in the comments, become a paid subscriber.
Join like minded readers that support our journalism, read unlimited articles and enjoy other subscriber-only benefits.
Subscribe